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1. Introduction

Waiting time random variables have been studied extensively for many decades and has many
interesting applications (e.g., Balakrishnan and Koutras (2002)). Ebneshahrashoob and Sobel
(1990) proposed an interesting class of waiting time problems for a sequence of independent
Bernoulli trials with sooner and later stopping rules. This type of waiting time problems and
its generalizations have been studied by many researchers since then, e.g, Aki, Balakrishnan
and Mohanty (1996), Aki and Hirano (1999), Antzoulakos (1999), Antzoulakos and Philippou
(1997), Balasubramanian, Viveros and Balakrishnan (1993), Chadjiconstantinidis, Antzoulakos
and Koutras (2000), Doi and Yamamoto (1999), Ebneshahrashoob and Sobel (1994), Ebne-
shahrashoob and Sobel (1995), Fu and Lou (2003), Han and Aki (2000), Kolev and Minkova
(1997), Koutras and Alexandrou (1997), Ling and Low (1993), Sobel and Ebneshahrashoob
(1992), and Uchida and Aki (1995). In a recent book by Balakrishnan and Koutras (2002),
chapters 6, 7, and 8 are devoted to these topics and their applications.

A general model which covers many models in the research mentioned above was proposed by
Sobel and Ebneshahrashoob (1992) for independent multinomial trials. They used the Dirichlet
methodology as a computational tool for the model. But in general the Dirichlet method is
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not computationally efficient for large application problems. The main goal of this paper is
to generalize the model to first-order Markov dependent trials and develop efficient computer
algorithms to solve large scale problems of the model.

Our first-order Markov dependent (or independent multinomial as a special case) (α, β, 1)
model considered in this paper is given with α + β + 1 disjoint cells. The first α cells are
designated as frequency cells with integer frequency quotas f1, . . . , fα and the next β cells are
called run cells with integer run quotas r1, . . . , rβ . The last cell is a slack cell with no quota
associated with it. For the first-order Markov dependent case, the initial cell probabilities are

(p1, . . . , pα, q1, . . . , qβ , p0) with
α∑

i=1

pi +
β∑

j=1

qj + p0 = 1

and the transaction cell probabilities

(pk1, . . . , pkα, qk1, . . . , qkβ, pk0) with
α∑

i=1

pki +
β∑

j=1

qkj + pk0 = 1

if the current event occurring in the k-th cell, k = 1, . . . , α + β + 1, or, for the independent
multinomial case, the cell probabilities of the α + β + 1 cells are

(p1, . . . , pα, q1, . . . , qβ, p0) with
α∑

i=1

pi +
β∑

j=1

qj + p0 = 1.

The scheme is to stop sampling as soon as one of these α + β quotas is satisfied. Let WT (α, β)
denote the waiting time until at least one of the frequency or run quotas met. We wish to
develop efficient methods to calculate exact distribution, marginal probabilities, expectation
and standard deviation of the random variable WT (α, β).

There are at least four different methods for investigating the distributions and moments
of waiting time random variables. They are: (i) the combinatorial method (e.g., Han and Aki
(2000)), (ii) the probability generating function (pgf) method (e.g., Ebneshahrashoob, Gao and
Sobel (2005)), (iii) the Dirichlet integral method (e.g., Ebneshahrashoob and Sobel (1994)), and
(iv) the finite Markov chain imbedding method (e.g., Fu and Lou (2003)). To the best of our
knowledge, there is no efficient algorithm available for solving large scale problems of our model.

The probability generating function (pgf) method has been used in research and education
for many decades (e.g., Feller (1957)). The method provides a way to obtain the probability
generating function and has many other interesting applications (e.g., Balakrishnan and Koutras
(2002)). Since the difficulty of symbolically obtaining the probability generating functions of
random variables, the pgf method is commonly regarded as a research tool, not a computa-
tional tool. During last several years, we have introduced sparse matrix computational tools
into the pgf method and opened a new phase of the pgf method for large scale applications
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(e.g., Ebneshahrashoob, Gao and Sobel (2004), Ebneshahrashoob, Gao and Sobel (2005), and
Ebneshahrashoob, Gao and Wu (2006)).

In Sections 2 and 3, we consider the independent multinomial case and the first-order Markov
dependent case of the model respectively by using the pgf method and provide efficient methods
for calculating the exact distribution, expectation, and standard deviation of WT (α, β). The
calculation of marginal probabilities of any frequency and run cells chosen is discussed in Section
4. Numerical results are presented in Section 5 to show that our algorithm is very efficient and
is capable of handling large problems. Executable codes of our algorithms for operating systems
Windows NT/2000/XP and Linux are available upon request from the first author of this paper
or can be directly downloaded from http://www.csulb.edu/∼mortezae/WTAlphaBeta/.

2. Independent Multinomial Case

Consider the independent multinomial case (α, β, 1) with cell probabilities

(p1, . . . , pα, q1, . . . , qβ , p0) with
α∑

i=1

pi +
β∑

j=1

qj + p0 = 1

of the α + β + 1 cells and frequency and run quotas (f1, . . . , fα, r1, . . . , rβ) of the α frequency
cells and β run cells. The stopping rule is to stop sampling as soon as one of these α + β quotas
is satisfied.

Let Y be a random variable which takes integer values 0, 1, 2, . . . . The pgf of the distribution
of Y can be formally written as

∞∑
n=0

P (Y = n)tn

which is absolutely convergent for any 0 ≤ t ≤ 1. Let φ[m1, . . . ,mα;n1, . . . , nβ ](t) denote the
conditional pgf given that up to the present we have total frequency mi in the i-th frequency
cell for i = 1, . . . , α and a run of nj elements in the j-th run cell for j = 1, . . . , β, where t is
the parameter of the pgf. Clearly at most one of the values n1, . . . , nβ can be nonzero at any
one time point and φ[0, . . . , 0; 0, . . . , 0](t) is the pgf of WT (α, β). The pgf method is to establish
a system of linear equations consisting of these conditional pgf’s and then solve the system for
results related to φ[0, . . . , 0; 0, . . . , 0](t), the pgf of WT (α, β).
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By the definition of the pgf’s and the total probability formula, the pgf’s of this system can
be obtained according to the following two rules: the main rule for generating the pgf’s is

φ[m1, . . . ,mα;n1, . . . , nβ ](t)

= p1tφ[m1 + 1, . . . ,mα; 0, . . . , 0](t)+

p2tφ[m1,m2 + 1 . . . , mα; 0, . . . , 0](t) + · · ·+

pαtφ[m1, . . . ,mα + 1; 0, . . . , 0](t)+

q1tφ[m1, . . . ,mα;n1 + 1, 0, . . . , 0](t)+

q2tφ[m1, . . . ,mα; 0, n2 + 1, 0, . . . , 0](t) + · · ·+

qβtφ[m1, . . . ,mα; 0, . . . , 0, nβ + 1](t)+

p0tφ[m1, . . . ,mα; 0, . . . , 0](t)

(1)

if mi < fi for i = 1, . . . , α and nj < rj for j = 1, . . . , β, and the reduction rule is

φ[m1, . . . ,mα;n1, . . . , nβ ](t) ≡ 1 (2)

if mi = fi for some i = 1, . . . , α or nj = rj for some j = 1, . . . , β.
If we currently have total frequency mi in the i-th frequency cell for i = 1, . . . , α and a run of

ni elements in the i-th run cell for i = 1, . . . , β, the next event may fall into one of the α + β + 1
cells with probabilities p1, . . . , pα, q1, . . . , qβ and p0. With this observation, the total probability
formula leads to the equation in the main rule (1). The reduction rule (2) simply means that
the pgf is constant when one of the quotas met.

With the main rule (1) and the reduction rule (2), it can be easily verified that there are a
total of

α∏
i=1

fi

possible non-constant pgf’s for each fixed set of run values (n1, . . . , nβ), all zero or just one
nonzero. Thus the total number of possible non-constant pgf’s is

N ≡ [
β∑

j=1

rj − (β − 1)]
α∏

i=1

fi. (3)

For efficiently generating the pgf’s, we group the pgf’s into

(i) φ[m1, . . . ,mα; 0, . . . , 0](t) for all possible (m1, . . . ,mα), 0 ≤ mi < fi, i = 1, . . . , α, i.e., the
case of no run in all run cells;

(ii) φ[m1, . . . ,mα; 0, . . . , 0, nj , 0, . . . , 0](t) for all possible (m1, . . . ,mα), 0 ≤ mi < fi, i = 1, . . . , α

and 0 < nj < rj for some 1 ≤ j ≤ β, i.e., the case of a run in one of the run cells.
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The pgf’s in part (i) can be easily enumerated and the pgf’s in part (ii) can be obtained by
simply repeating the enumeration in part (i) when nj going through 1, 2, . . . , rj − 1 and j going
through 1, 2, . . . , β. To apply this enumeration method, let (using T for transpose)

Φ(t) = (φ[0, . . . , 0; 0, . . . , 0](t), . . . , φ[f1 − 1, . . . , fα − 1; 0, . . . , 0, rβ − 1](t))T

be the vector of all non-constant pgf’s φ[m1, . . . ,mα;n1, . . . , nβ ](t) arranged first according to the
lexicographical order of their run values (n1, . . . , nβ) and then according to the lexicographical
order of their frequency values (m1, . . . ,mα). With this arrangement of the pgf’s, the position
for any given non-constant pgf φ[m1, . . . ,mα;n1, . . . , nβ](t) in the vector Φ(t) can be easily
determined by

1 +
α∑

i=1

mi

α∏
k=i+1

fk if all nj = 0, or

1 +
α∑

i=1

mi

α∏
k=i+1

fk + (
β∑

i=j+1

(ri − 1) + nj)
α∏

i=1

fi if some nj 6= 0.

(4)

Write the system of the pgf’s in matrix form

Φ(t) = tAΦ(t) + tb (5)

where A is an N × N (constant) matrix and b is an N -dimensional (constant) vector with N

given in (3). The entries in A and b can be efficiently determined by symbolically generating the
pgf’s according to the main rule (1) and then applying the reduction rule (2) to every newly
generated pgf to determine whether it is a new pgf, a constant pgf, or equivalent to one of the
previous pgf’s. For example, consider the pgf’s at the right-hand side of the main rule (1). The
position of each of the non-constant pgf’s in the vector Φ(t) can be easily calculated by (4).
These positions in the vector Φ(t) determine the nonzero entries in the matrix A and then the
corresponding coefficient values pi and qj of the non-constant pgf’s are assigned to the entries.
If a pgf at the right-hand side of the main rule (1) is constant after the reduction rule applied,
its corresponding coefficient pi or qj will be added to the corresponding entry of the vector b.
Thus the matrix A and vector b can be very efficiently generated by a computer program. Also
each row of the matrix A has no more than α+β +1 nonzero entries according to the main rule
and the reduction rule. Thus the matrix A is very sparse and can be easily handled even when
its dimension is very large (e.g., Section 3.4 of Saad (2003)).

If the pgf φ[0, . . . , 0; 0, . . . , 0](t) of WT (α, β) is available, it is well-known that the probabilities
P (WT (α, β) = k) for k = 0, 1, 2, . . . satisfy

φ[0, . . . , 0; 0, . . . , 0](0) = P (WT (α, β) = 0),

φ(k)[0, . . . , 0; 0, . . . , 0](0) = k!P (WT (α, β) = k), k = 1, 2, . . . ,
(6)



6 Ebneshahrashoob, Gao and Wu

where φ(k)[0, . . . , 0; 0, . . . , 0](t) denotes the k-th derivative of the pgf φ[0, . . . , 0; 0, . . . , 0](t) (e.g.,
Theorem 3.4.1 in Evans and Rosenthal (2004)). But for large values of α, β and frequency
and run quotas, solving the system of pgf’s in (5) for φ[0, . . . , 0; 0, . . . , 0](t) and then for its
derivatives symbolically is not always feasible because of computer memory and time restriction.
Thus numerical method without explicitly solving for φ[0, . . . , 0; 0, . . . , 0](t) becomes essential for
solving this kind of problems with large parameter values.

With the matrix A and vector b in (5) available, calculating the probabilities P (WT (α, β) = k)
for k = 0, 1, 2, . . . is in fact very easy. Since

P (WT (α, β) = k) =
1
k!

φ(k)[0, . . . , 0; 0, . . . , 0](0),

repeatedly differentiating the equation (5), we obtain

Φ′(t) = AΦ(t) + tAΦ′(t) + b,

Φ(k)(t) = kAΦ(k−1)(t) + tAΦ(k)(t), k = 2, 3, . . . .

Plugging in t = 0, these equations become

Φ′(0) = b,

Φ(k)(0) = kAΦ(k−1)(0), k = 2, 3, . . . ,

and can be simply written as

Φ(k)(0) = k!Ak−1b, k = 1, 2, . . . . (7)

Note that φ[0, . . . , 0; 0, . . . , 0](t) is the first component of the vector Φ(t). By (6) and (7), we
have

P (WT (α, β) = 0) = 0,

P (WT (α, β) = k) = the first component of Ak−1b,

for all k = 1, 2, . . . .

(8)

Since the matrix A is very sparse, the calculation of Ab can be easily done. In fact, it involves
no more than N(α + β + 1) multiplications of real numbers, here N is the dimension of the
matrix A given in (3). Since Akb can be calculated from A(Ak−1b) and P (WT (α, β) = k) equals
the first component of Ak−1b, the calculation of P (WT (α, β) = k) for all k = 0, 1, . . . , n (i.e.,

P (WT (α, β) ≤ n)) involves no more than (n−1)(α+β +1)[
β∑

j=1

rj−(β−1)]
α∏

i=1

fi multiplications
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of real numbers. Thus with parameter values of the problem fixed, this complexity dictates the
efficiency of our algorithm. According to the nature of the problem, it can be shown that the
matrix A is irreducible and thus its spectral radius ρ(A) is less than 1 by Taussky theorem (e.g.,
Theorem 2 on page 376 in Lancaster and Tismenetsky (1985)). From (8), it can be shown that
P (WT (α, β) = k) tends to zero as fast as ρ(A)k−1 as k increases. When ρ(A) is much smaller
than 1 P (WT (α, β) = n) will be almost zero for small value of n and the whole computation
can be terminated quickly. For the cases with large value of n, i.e., when ρ(A) is very close to 1,
ρ(A) < 1 warrants the stability of calculating Anb. Though the algorithm is numerically stable,
this kind of computations should be always done in double precision to minimize accumulative
errors for large n.

3. First-Order Markov Dependent Case

Consider the first-order Markov dependent case (α, β, 1) with initial cell probabilities

(p1, . . . , pα, q1, . . . , qβ , p0) with
α∑

i=1

pi +
β∑

j=1

qj + p0 = 1

of the α + β + 1 cells and the transaction probabilities

(pk1, . . . , pkα, qk1, . . . , qkβ, pk0) with
α∑

i=1

pki +
β∑

j=1

qkj + pk0 = 1

if the current event belongs to the k-th cell of the α + β + 1 cells for k = 1, . . . , α + β + 1, and
frequency and run quotas (f1, . . . , fα, r1, . . . , rβ) of the α frequency cells and β run cells. The
stopping rule is to stop sampling as soon as one of these α + β quotas is satisfied.

Let φ[m1, . . . ,mα;n1, . . . , nβ]k(t) denote the conditional pgf given that up to the present
we have total frequency mi in the i-th frequency quota cell for i = 1, . . . , α and a run of nj

elements in the j-th run cell for j = 1, . . . , β, and the current event belongs to the k-th cell,
k = 1, . . . , α + β + 1, where t is the parameter of the pgf. The pgf system of this problem can be



8 Ebneshahrashoob, Gao and Wu

obtained according to the following two rules: the main rule for generating the pgf’s is

φ[0, . . . , 0; 0, . . . , 0](t)

= p1tφ[1, 0, . . . , 0; 0, . . . , 0]1(t)+

p2tφ[0, 1, 0 . . . , 0; 0, . . . , 0]2(t) + · · ·+

pαtφ[0, . . . , 0, 1; 0, . . . , 0]α(t)+

q1tφ[0, . . . , 0; 1, 0, . . . , 0]α+1(t)+

q2tφ[0, . . . , 0; 0, 1, 0, . . . , 0]α+2(t) + · · ·+

qβtφ[0, . . . , 0; 0, . . . , 0, 1]α+β(t)+

p0tφ[0, . . . , 0; 0, . . . , 0]α+β+1(t),

φ[m1, . . . ,mα;n1, . . . , nβ]k(t)

= pk1tφ[m1 + 1, . . . ,mα; 0, . . . , 0]1(t)+

pk2tφ[m1,m2 + 1 . . . , mα; 0, . . . , 0]2(t) + · · ·+

pkαtφ[m1, . . . ,mα + 1; 0, . . . , 0]α(t)+

qk1tφ[m1, . . . ,mα;n1 + 1, 0, . . . , 0]α+1(t)+

qk2tφ[m1, . . . ,mα; 0, n2 + 1, 0, . . . , 0]α+2(t) + · · ·+

qkβtφ[m1, . . . ,mα; 0, . . . , 0, nr + 1]α+β(t)+

pk0tφ[m1, . . . ,mα; 0, . . . , 0]α+β+1(t)

(9)

if mi < fi for i = 1, . . . , α and nj < rj for j = 1, . . . , β, and the reduction rule is

φ[m1, . . . ,mα;n1, . . . , nβ]k(t) ≡ 1 (10)

if mi = fi for some i = 1, . . . , α or nj = rj for some j = 1, . . . , β. As in the independent
multinomial case, the equation in the main rule (9) is based on the total probability formula
and the reduction rule (10) simply means that the pgf is constant when one of the α + β quotas
is satisfied. It can be verified that the total number of non-constant pgf’s is

N ≡ 1 + (r1 + · · ·+ rβ − (β − 1))f1 · · · fα

+
α∑

j=1

j (
∑

1≤i1<i2<···<ij≤α

(fi1 − 1) · · · (fij − 1)).
(11)
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Since the transaction probabilities may be different when the current event falls into different
cells, the pgf’s φ[m1, . . . ,mα;n1, . . . , nβ]k(t) with the same (m1, . . . ,mα;n1, . . . , nβ) but different
k’s may also be different. We can group the pgf’s into

(i) the initial pgf φ[0, . . . , 0; 0, . . . , 0](t) of WT (α, β);

(ii) φ[m1, . . . ,mα; 0, . . . , 0]α+β+1(t) for all possible (m1, . . . ,mα), 0 ≤ mi < fi, i = 1, . . . , α, i.e.,
the case of no run in all run cells and the current event in the slack cell;

(iii) φ[m1, . . . ,mα; 0, . . . , 0]k(t) for all possible (m1, . . . ,mα), 0 ≤ mi < fi, i = 1, . . . , α and
0 < mk < fk for some 1 ≤ k ≤ α, i.e., the case of no run in all run cells and the current
event in one of the frequency cells;

(iv) φ[m1, . . . ,mα; 0, . . . , 0, nj , 0, . . . , 0]α+j(t) for all possible (m1, . . . ,mα), 0 ≤ mi < fi, i =
1, . . . , α and 0 < nj < rj for some 1 ≤ j ≤ β, i.e., the case of the current event in one of the
run cells.

There is a natural 1-1 correspondence between the pgf’s in parts (ii) and (iv) and the ones
for the independent multinomial case in Section 2. To adapt the efficient way of generating
the system of pgf’s in Section 2 by using this correspondence, we arrange the vector Φ(t) of
all non-constant pgf’s in the following order: (a) the pgf in part (i) is its first component; (b)
then followed by the pgf’s in parts (ii) and (iv) as in Section 2; after this arrangement (c) all
pgf’s φ[m1, . . . ,mα; 0, . . . , 0]k(t) with (m1, . . . ,mα) fixed in part (iii) are inserted, according to
their indices of nonzero components, immediately after the position of their corresponding pgf
φ[m1, . . . ,mα; 0, . . . , 0]α+β+1(t) in part (ii). With this arrangement of the pgf vector, the system
of these pgf’s

Φ(t) = tAΦ(t) + tb (12)

can be generated by the same efficient method in Section 2 for the pgf’s in parts (ii) and (iv) ac-
cording to the main rule (9) and reduction rule (10), and all pgf’s φ[m1, . . . ,mα; 0, . . . , 0]k(t) with
(m1, . . . ,mα) fixed in part (iii) can be obtained immediately after generating the corresponding
pgf φ[m1, . . . ,mα; 0, . . . , 0]α+β+1(t) in part (ii).

Note that φ[0, . . . , 0; 0, . . . , 0](t) is the first component of the vector Φ(t). Similar to the
independent multinomial case, we have

P (WT (α, β) = 0) = 0,

P (WT (α, β) = k) = the first component of Ak−1b,

for all k = 1, 2, . . . .

(13)

Since the matrix A is very sparse, the calculation of Ab involves no more than N(α + β + 1)
multiplications of real numbers, here N is the dimension of the matrix A given in (11). Since Akb
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can be calculated from A(Ak−1b) and P (WT (α, β) = k) equals the first component of Ak−1b,
the calculation of P (WT (α, β) = k) for all k = 0, 1, . . . , n (i.e., P (WT (α, β) ≤ n)) involves no
more than N(n− 1)(α + β + 1) multiplications of real numbers with N given in (11). According
to the nature of the problem, it can be shown that the sub-matrix from deleting the first row
and first column of A is irreducible and its spectral radius is less than 1 by Taussky theorem
(e.g., Theorem 2 on page 376 in Lancaster and Tismenetsky (1985)). Since the entries in the
first column of A are all zero the spectral radius ρ(A) of the matrix A is also less than 1. From
(13), it can be shown that P (WT (α, β) = k) tends to zero as fast as ρ(A)k−1 as k increases.
When ρ(A) is much smaller than 1 P (WT (α, β) = n) will be almost zero for small value of n

and the whole computation can be terminated quickly. For the cases with large value of n, i.e.,
when ρ(A) is very close to 1, ρ(A) < 1 warrants the stability of calculating Anb.

Remark 1: Though we assume that the cell probabilities and the frequency and run quotas are
positive, our method and algorithm still work if some of the values are zero. Thus our method can
be applied to special cases, say, when frequency cell, run cell and/or slack cell are not present.

4. Computation of Marginal Probabilities

In this section we discuss how to calculate the marginal probability (e.g., probability of accep-
tance and probability of rejection) for one or more frequency and/or run cells chosen. Let C be
a set of frequency and/or run cells chosen for calculating their marginal probability.

For the independent multinomial case, we still use the main rule (1) to generate a system of
pgf’s

Φ(t) = tAΦ(t) + tb̄ (14)

but with the following reduction rule: if a quota is reached in one of the frequency and run cells,

φ[m1, . . . ,mα;n1, . . . , nβ](t) ≡


1 if the cell is in C,

0 if the cell not in C.
(15)

or for the first-order Markov dependent case, we still use the main rule (9) to generate a system
of pgf’s

Φ(t) = tAΦ(t) + tb̄ (16)

but with the following reduction rule: if a quota is reached in one of the frequency and run cells,

φ[m1, . . . ,mα;n1, . . . , nβ]k(t) ≡


1 if the cell is in C,

0 if the cell not in C.
(17)
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In both cases, the marginal probability of the cells in C is the sum of the first components of
the vectors Ak−1b̄, k=1,2,3,. . . . Note that calculating the marginal probability is as expensive
as calculating the distribution of WT (α, β).

In the systems (14) and (16) we abuse the pgf notation Φ(t) to illustrate how to obtain the
vector b̄. Note that the matrix A in (14) is the same as the matrix in (5) and the matrix A in
(16) is the same as the matrix in (12). The only difference is in the vector b̄ in both cases. The
vector b̄ can be easily obtained simultaneously with the new reduction rule (15) or (10) when
the algorithm generates the vector b.

Remark 2: The marginal probability above is alway associated with the slack cell unless the
slack cell probability is zero.

5. Numerical Results

A computer program in C++ based on the methods discussed in Sections 2, 3 and 4 has been
successfully implemented and tested on various combinations of the parameters α, β, fi’s, rj ’s
and probabilities. Our numerical results match those of the examples given in Balakrishnan and
Koutras (2002). Our extensive testing shows that our algorithm is very efficient and is capable
of solving large scale problems.

Executable codes of our methods for operating systems Windows NT/2000/XP and Linux
are available upon request from the first author of this paper or can be directly downloaded from
the web page http://www.csulb.edu/∼mortezae/WTAlphaBeta/.

All computation using double precision for the results in the three tables below was carried
out on a 3.6 GHz Intel Xeon Pentium IV with 2 Gb memory running RedHat Enterprise Linux
operating system. The algorithm is terminated when the condition P (WT (α, β) = n) < 10−10 is
satisfied for some n > 1 since P (WT (α, β) = k) for k = n+1, n+2, . . . will be much smaller. The
largest value of n for the results in Tables II and III is 452 for the first-order Markov dependent
case with (α, β) = (4, 4). Numerical values are rounded to at least four digits after the decimal
point.

Example 1: Consider a problem of small size given on page 278 of Balakrishnan and Koutras
(2002): α = β = 1, f1 = 6, r1 = 10, p1 = 0.5, 0.4, 0.3, 0.2, q1 = 1− p1 (and thus p0 = 0) for the
independent multinomial case. The results for this problem are presented in Table I, where MP1

and MP2 are the marginal probabilities for the first cell and the second cell. Only portions of
the distributions P (WT (α, β) = k) for k = 10, . . . , 15 are listed.
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Table I. Probabilities P (WT (α, β) = k), expectations
E, standard deviations σ and marginal probabilities
MP for Example 1.

k p1 = 0.5 p1 = 0.4 p1 = 0.3 p1 = 0.2

10 0.12402 0.07293 0.05030 0.11068

11 0.12354 0.08268 0.03935 0.02676

12 0.11328 0.09071 0.04810 0.02923

13 0.09717 0.09323 0.05602 0.03210

14 0.07904 0.09096 0.06256 0.03529

15 0.06158 0.08506 0.06737 0.03867

E 11.95905 14.68573 18.11318 20.54015

σ 3.39040 4.37296 5.51147 7.22784

MP1 0.99415 0.96426 0.84204 0.50584

MP2 0.00585 0.03574 0.15796 0.49416

Example 2: Consider the problems with parameters (α, β) = (1, 2), (2,2), (2,3), (3,3), (3,4),
(4,4), fi = 20 for i = 1, . . . , α and rj = 10 for j = 1, . . . , β, and cell probabilities

pi = qj = p0 =
1

α + β + 1
, i = 1, . . . , α, j = 1, . . . , β

for the independent multinomial case and initial cell probabilities

pi = qj = p0 =
1

α + β + 1
, i = 1, . . . , α, j = 1, . . . , β

and transaction cell probabilities

pki = qkj =
1

α + β + k
, pk0 = 1−

α∑
i=1

pki −
β∑

j=1

qkj ,

i = 1, . . . , α, j = 1, . . . , β, k = 1, . . . , α + β + 1 for the first-order Markov dependent case. Tables
II and III list our results of the distributions, expectations, standard deviations and marginal
probabilities of the first frequency cell. Only portions of the distributions P (WT (α, β) = k)
for k = 100, . . . , 105 are listed. The last row of each table gives the CPU times for solving the
respective given problems. The CPU times in Tables II and III roughly match the computational
complexity results of the problems mentioned in Sections 2 and 3. For example, the computation
for the case (4,4) is expected at least f4 = 20 times slower than that for the case (3,4). From
the CPU times in Tables II and III we can conclude that our algorithm is very efficient and is
capable of handling large problems.
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Table II. Probabilities P (WT (α, β) = k), expectations E, standard deviations
σ and marginal probability MP1 for the independent multinomial case in
Example 2. Last row Time stands for CPU times.

(α, β) (1,2) (2,2) (2,3) (3,3) (3,4) (4,4)

k = 100 0.00986 0.01816 0.02271 0.01645 0.00630 0.00284

101 0.00913 0.01694 0.02295 0.01724 0.00679 0.00311

102 0.00843 0.01574 0.02310 0.01800 0.00730 0.00340

103 0.00777 0.01456 0.02319 0.01873 0.00782 0.00371

104 0.00715 0.01340 0.02319 0.01943 0.00836 0.00404

105 0.00656 0.01229 0.02311 0.02009 0.00892 0.00439

E 79.9952 87.4623 104.9553 114.3129 130.6433 140.4671

σ 15.4960 13.8815 17.2757 17.1237 20.0411 20.3418

MP1 0.99989 0.49999 0.50000 0.33333 0.33333 0.25000

Time 0.01s 0.07s 0.12s 3.74s 6.48s 2m45.53s

Table III. Probabilities P (WT (α, β) = k), expectations E, standard deviations
σ and marginal probabilities MP1 for the first-order Markov dependent case in
Example 2. Last row Time stands for CPU times.

(α, β) (1,2) (2,2) (2,3) (3,3) (3,4) (4,4)

k=100 0.01522 0.00948 0.00217 0.00061 0.00015 0.00003

k=101 0.01541 0.00995 0.00235 0.00068 0.00014 0.00004

k=102 0.01558 0.01042 0.00253 0.00074 0.00016 0.00004

k=103 0.01571 0.01088 0.00272 0.00082 0.00017 0.00005

k=104 0.01583 0.01134 0.00292 0.00090 0.00019 0.00005

k=105 0.01591 0.01180 0.00313 0.00098 0.00021 0.00006

E 113.6661 127.3584 155.5183 171.3894 197.7208 214.0576

σ 25.4990 23.9425 29.6004 29.7493 34.6162 35.3018

MP1 0.99999 0.50000 0.50000 0.33333 0.33333 0.25000

Time 0.01s 0.11s 0.27s 7.86s 13.30s 6m2.64s
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